EE105 – Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers

Prof. Ming C. Wu

wu@eecs.berkeley.edu

511 Sutardja Dai Hall (SDH)

Example of Multi-Stage Amplifier

Cutting Through the Complexity

- 1. Identify the "signal path" between the input and output
- 2. Eliminate "background" transistors to reduce clutter
- 3. For "background transistors, understand their role (e.g. DC biasing)
- 4. For frequency response, identify "hi-Z" nodes.

Eliminate Clutter

Identify Signal Path & Amplifier Stages

DC Biasing

Small-Signal Models

Without Load: Vout = - Tout Roz = gmz Vs - gmz Voz · (Voi// Voz)

Two-Port Model

External Loads

- Many applications must drive external loads that are very low impedance compared to on-chip levels
- These stages must drive high voltages/currents so linearity is a concert. We must consider "large signal" behavior
- Example: Speaker at 8 ohms versus Megaohms on-chip ...
- Follower is natural choice, but it can only "source" current (think in terms of large signals)

Design Issue: DC Coupling

- Constraint: large inductors and capacitors are not available
- Output of one stage is directly connected to the input of the next stage → must consider DC levels ... why?

